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ABSTRACT
Water is essential to the progress of human societies. Food production, elec-
tricity generation, and manufacturing, among other things, all depend on it. 
However, many decision-makers lack the technical expertise to fully under-
stand hydrological information. 

We present Aqueduct 4.0, the latest iteration of WRI’s water risk framework 
designed to translate complex hydrological data into intuitive indicators of 
water-related risk. We curated 13 water risk indicators—spanning quantity, 
quality, and reputational concerns—into a comprehensive framework. Each 
indicator is sourced from an open-source, peer-reviewed data provider 
and then transformed to normalized risk score based on the severity of the 
water challenge. For 5 of the 13 indicators, we used a global hydrological 
model called PCR-GLOBWB 2 to generate novel datasets on sub-basin water 
supply and use. 

We also used the PCR-GLOBWB 2 model to project future sub-basin water 
supply, demand, stress, depletion, and variability using CMIP6 climate forcings. 
The projections centered around three periods (2030, 2050, and 2080) under 
three future scenarios (business-as-usual SSP 3 RCP 7.0, optimistic SSP 1 RCP 
2.6, and pessimistic SSP 5 RCP 8.5). 

The normalized indicator scores have been aggregated by category (quantity, 
quality, reputational, and overall) into composite risk scores using sector-
specific weighting schemes. In addition, select sub-basin scores have been 
aggregated into country and provincial administrative boundaries using a 
weighted average approach, where sub-basins with more demand have a 
higher influence over the final administrative score. 

The main audience for this technical note includes users of the Aqueduct 
tool, for whom the short descriptions on the tool and in the metadata docu-
ment are insufficient. Key elements of Aqueduct, such as overall water risk, 
can not be directly measured and therefore are not validated. Aqueduct 
remains primarily a prioritization tool and should be augmented by local and 
regional deep dives.

http://doi.org/10.46830/writn.23.00061
http://doi.org/10.46830/writn.23.00061
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INTRODUCTION
Background
WRI’s Aqueduct™ information platform compiles advances in 
hydrological modeling, remotely sensed data, and published data 
sets into a freely accessible online platform. 

Since its inception in 2011, the Aqueduct information platform 
has informed companies, governments, and non governmental 
organizations (NGOs) about water-related risks. Since then, 
the data have been updated regularly, making them comparable 
on a global scale and accessible to decision-makers worldwide. 
The Aqueduct information platform contains the follow-
ing online tools: 

 ▪ Aqueduct Water Risk Atlas 

 ▪ Aqueduct Food 

 ▪ Aqueduct Floods 

 ▪ Aqueduct Country Rankings 

This technical note covers the development of the Aqueduct 
4.0 framework and serves as the basis of the updated Aqueduct 
Water Risk Atlas and Country Rankings online tools.

The updated framework, database, and associated tools improve 
one of the most widely used and respected water risk frame-
works. We continue to build on years of experience applying and 
standardizing these concepts within the water community, while 
presenting the latest advancements in hydrological data and 
climate science. 

Structure and scope of this  
technical note
This technical note will first introduce the updated water risk 
framework (“Water risk framework”). Many indicators in the 
framework are based on updated inputs to a global hydrological 
model, which is covered in “Hydrological model” and “Future 
projections” (baseline and future, respectively). In “Indica-
tors” we discuss how the hydrological data is transformed into 
Aqueduct water risk indicators. “Country and state aggrega-
tion” and “Grouped and overall water risk “cover how the 
individual indicators are aggregated into administrative-level 
scores and grouped (categorical risk) scores. “Limitations” lists 
key limitations. 

WATER RISK FRAMEWORK
Overview
The water risk framework follows a composite index approach 
and allows multiple water-related risks to be combined. 

There are three hierarchical levels, as can be seen in Figure 1. 
We start with 13 indicators covering various types of water risk. 
We then group the indicators and calculate the grouped water 
risk scores (composite score) using default, industry-defined, or 
user-defined weighting schemes. Finally, the three groups are 
combined into a single overall water risk score.

The rationale for creating a water risk framework is described 
in WRI’s earlier publication: “Aqueduct Water Risk Atlas” 
(Reig et al. 2013): 

This [water risk] framework organizes indicators into categories 
of risk that allow the creation of a composite index that brings 
together multiple dimensions of water-related risk into compre-
hensive aggregated scores. By providing consistent scores across 
the globe, the Aqueduct Water Risk Atlas enables rapid compari-
son across diverse aspects of water risk. . . .

The Aqueduct Water Risk Framework enables users to study 
indicators individually or collectively, as well as to quantify and 
compare a variety of multidimensional water-related measures. 

We selected the 13 indicators in Aqueduct 4.0 in three steps: 

 ▪ We reviewed literature on relevant water issues, exist ing 
water indicators, and data sources. 

 ▪ We evaluated potential data sources through a com-
parative analysis of their spatial and temporal cover age, 
granularity, relevance to water users, consistency, and 
credibility of sources. 

 ▪ We consulted with industry, public sector, and aca demic 
water experts. 

We applied the following three principal criteria in select-
ing indicators: 

 ▪ They should cover the full breadth of water-related risks, 
while minimizing overlap and potential confu sion resulting 
from an overabundance of indicators. 

 ▪ They should be actionable in the context of private and 
public sector decision-making. 
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Figure 1  |  Overview of Aqueduct framework

Note: Baseline water stress, baseline water depletion, interannual variability, and seasonal variability use the new PCR-GLOBWB 2 data, described in “Hydrological model” and Appendix C. 

Source: WRI.
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 ▪ They should comply with WRI’s commitment to open 
data and transparency—allowing input data, code, and 
results to be publicly available (“WRI’s Open Data 
Commitment” n.d.). 

HYDROLOGICAL MODEL
Five of the 13 indicators in our framework are based on the data 
from a global hydrological model called PCR-GLOBWB 2. 
Readers interested only in the indicator definitions can proceed 
directly to “Indicators.” In the present section, we describe 
how we have selected the hydrological model and processed 
its data for the baseline indicators of Aqueduct. For data 
sources used in Aqueduct’s future projections, please refer to 
“Future projections.” 

From the model, we make use of water use, water supply, and 
groundwater data1 to calculate water stress, water depletion, 
seasonal variabil ity, interannual variability, and groundwater 
table decline (see Table 1). 

Model selection
We considered several global hydrological models and selected 
the PCRaster Global Water Balance (PCR-GLOBWB 2) 
model (Wada et al. 2014; Sutanudjaja et al. 2018) over others, 
most notably Water Global Assessment and Prognosis (Water-
GAP) (Müller Schmied et al. 2014; Eisner 2016) and Global 
Land Data Assimilation System (GLDAS) Phase 2 (Rodell et 
al. 2004). While these three are not the only global hydrological 
models available (Paul et al. 2021; Wang et al. 2021), they were 
short-listed because of their dynamic human-freshwater system 
modeling and their potential to be used for water target setting. 

At the time the indicators were developed for Aqueduct 3.0 
(2016–2019), GLDAS provided information until the year 
2012, making it less relevant than PCR-GLOBWB 2 and 
WaterGAP, both of which could be run for more recent years. 
There are many similarities between PCR-GLOBWB 2 and 
WaterGAP. For example, both mod els run global hydrology and 
water resources on a global scale at a daily time step; integrate 
demand, withdrawal, and return flows2 per time step; include 
reservoirs; and use kinematic wave routing of river water. 
However, PCR-GLOBWB 2 can couple to a global two-layer 
ground water model (based on MODFLOW) to better represent 
groundwater flow (de Graaf et al. 2017). The code for PCR-
GLOBWB 2 is open source and therefore aligned with WRI’s 
Open Data Commitment (“WRI’s Open Data Commitment” 
n.d.). For these reasons, WRI chose to continue to work with 
PCR-GLOBWB 2 and use it as the updated global hydro logical 
model underpinning Aqueduct. 

A description of the model itself and the settings used for Aque-
duct 4.0 can be found in Appendix C. This includes references 
to the new input datasets used to run PCR-GLOBWB 2 for 
Aqueduct 4.0 compared to the run in 2019 for Aqueduct 3.0.

Model data used by Aqueduct
PCR-GLOBWB 2 is a global, gridded hydrological model. 
Each grid cell has a size of 5 × 5 arc minutes. This equates 
roughly to 10 kilometer (km) × 10 km pixels, with any variation 
depending on the latitude. Aqueduct indicators are calculated 
using three PCR-GLOBWB 2 datasets: water use, water supply, 
and groundwater data (see Table 1).

Table 1  |  Aqueduct indicators based on hydrological model output

AQUEDUCT INDICATOR MODEL DATA USED

Water Use Water Supply Groundwater Heads

Water stress ✓ ✓

Water depletion ✓ ✓

Interannual variability ✓

Seasonal variability ✓

Groundwater table decline ✓

Note: Aqueduct indicators are calculated using the respective outputs of a hydrological model. For example, water depletion is calculated using water consumption and available blue 
water from the hydrological model.

Source: WRI.
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WATER USE: 

Aqueduct considers two metrics of water use: gross demand 
and net consumption. Gross demand3 is the maximum potential 
water required to meet sectoral demands, and net consump-
tion is the portion of demand that is lost in use—evaporated or 
incorporated into a product—and not returned to the system 
(Gassert et al. 2014).

Gross demand and net consumption4 for four sec tors: domestic, 
industrial, irrigation5, and livestock6. The (2 x 4=) 8 gridded data 
sets are available for each month between January 1960 and 
December 2019. 

WATER SUPPLY: 

Aqueduct defines supply as available blue water—the total 
amount of renewable freshwater available to a sub-basin with 
upstream consumption removed (Gassert et al. 2014). We com-
pute available blue water as internal sub-basin runoff plus the 
accumulated water flowing into the sub-basin from upstream, 
where upstream consumption is already removed (i.e., discharge) 
(Gassert et al. 2014). This includes freshwater from the follow-
ing sources: surface flow, interflow7, and groundwater recharge. 

Internal runoff8 monthly at each grid cell between January 1960 
and December 2019.

Discharge9 monthly at each grid cell between January 1960 and 
December 2019. 

GROUNDWATER HEADS: 

Groundwater heads for each month and each grid cell between 
January 1990 and December 2014. These have been obtained 
from the 5 arc minute two-layer global groundwater model of 
de Graaf et al (2017) coupled to PCR-GLOBWB 2. Note: this 
dataset has not been rerun since its original release in 2019. 

Processing model data
To make the model data suitable for the Aque duct indicator 
calculation, we further processed the data by spatial and tempo-
ral aggregation. 

 ▪ Spatial aggregation. Water use and water supply are 
aggregated to hydrological sub-basins. Groundwater heads 
are aggregated to aquifers. 

 ▪ Temporal aggregation. We apply statistical meth ods to the 
output time series to get a representative value for the recent 
situation, while correcting for annual anomalies. 

Spatial aggregation
Grid cells are not an appropriate spatial unit to use as input 
for the Aqueduct indicators. For water stress, water deple-
tion, seasonal variability, and interannual variability, the 
preferred spatial units are hydrological sub-basins (Gassert et 
al. 2014). For groundwater table decline, the preferred spatial 
units are aquifers. 

HYDROLOGICAL SUB-BASINS:  

A hydrological basin is an area that drains at a single point to 
an outlet such as a river, ocean or inland lake. Each basin can 
be divided into smaller sub-basins at the confluence of two 
streams (Lehner and Grill 2013). The assumption is that within 
each hydrological sub-basin, water resources are pooled. Water 
withdrawal is satisfied using the water resources available to 
the sub-basin. 

Aqueduct 4.0 uses the HydroBASINS level 6 hydrological sub-
basins for a few reasons, including the following: 

 ▪ HydroBASINS are used in other tools and databases, so 
comparing and collating data is easier. 

 ▪ The HydroBASINS sub-basin data set contains 12 levels, 
ranging from large basins to small sub-basins. In the future, 
this hierarchical model will allow flexibility when combining 
additional data sets (Lehner and Grill 2013).

Of the 12 levels, we chose level 6 as the appropriate size of the 
sub-basins. Water demand is often satisfied with water from 
a nearby or slightly more distant source. The average distance 
from source to destination of water supply is the main selection 
criterion of the appropriate HydroBASINS level. The goal is to 
select a level large enough to minimize the nonnatural effect of 
transfers of water (“inter-basin transfer”)10 and small enough to 
capture meaningful local variations. 

Based on limitations, primarily the lack of comprehensive local 
level inter-basin transfer data in PCR-GLOBWB 2, HydroBA-
SINS level 6 is deemed the most appropriate sub-basin level for 
Aqueduct 4.0 analysis. For perspec tive, HydroBASINS level 6 
has a median area per sub-basin11 of 5,318 km2 (roughly the size 
of the U.S. state of Delaware or twice the size of Luxembourg). 
The distribu tion of sub-basin areas is depicted in Figure 2.

PCR-GLOBWB 2 and HydroBASINS level 6 both assume 
a strictly convergent flow. This means that it cannot model 
bifurcations. This is an issue in delta regions, where rivers 
tend to split. To address this issue, we have identified delta 
sub-basins and merged them. The methodology is explained 
in Appendix D. 
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AQUIFERS

Groundwater head data are aggregated to groundwater aquifers 
(BGR and UNESCO 2008). This data set of global aquifers is 
selected because it has global coverage and is used in the previ-
ous versions of Aqueduct. 

STEP 1: SPATIAL AGGREGATION OF WATER USE

Sectoral gross demand and net consumption are aggregated to 
Hydro BASINS level 6. First, the data are resampled from 5 × 
5 arc minute to 1 × 1 arc minute12. Then, the data, which are in 
flux (m/month), are converted to volume (million m3/month) 
by multiplying each grid by its cell area (m2) and dividing by a 
million. Finally, we sum the gridded volume per sub-basin. 

STEP 2: SPATIAL AGGREGATION OF WATER SUPPLY 

Supply—also known as available blue water—is also aggregated 
to HydroBASIN level 6. Available blue water equals the internal 
sub-basin runoff plus the accumulated water flowing into the 
sub-basin from upstream, where upstream consumption is 
already removed (i.e., discharge) (Gassert et al. 2014). 

First, we use the internal runoff to find the renewable water sup-
ply within each sub-basin—that is, internal catchment supply 
before consumption is removed. Like the demand data, runoff is 
available as a flux, and so we follow the same spatial aggregation 
process as demand. 

Next, we use discharge to account for the accumulated water 
flowing into each sub-basin, with upstream consumption 
already removed. Discharge is the rate (m3/sec) of water flow-

ing through a river channel, not a flux, and therefore requires a 
different spatial aggregation technique. 

To turn discharge into inflow, we first must identify inflow and 
outflow points13 for each sub-basin using the PCR-GLOBWB 
2 local drainage direction (LDD14) network (see Appendix C). 
Normally, a hydrologically sound sub-basin would have just one 
inflow and one outflow point; however, due to the rasteriza-
tion15 of the sub-basins and the mismatched resolutions between 
PCR-GLOBWB 2’s digital elevation model and the HydroBA-
SIN sub-basins16, we have numerous inflow and outflow points 
per sub-basin (see Figure 3). Some of these discharge flow 
points are considered “false”17, meaning the stream temporarily 
leaves or enters the sub-basin. In each sub-basin, all flow points 
satisfy this condition: 

true outflow = all discharge inflow–false discharge outflow + 
internal runoff–internal consumption

This translates to the definition of available blue water by 
removing the internal consumption term:

available blue water = all discharge inflow–false discharge 
outflow + internal runoff

We sum the discharge values at all (true and false) inflow points 
and subtract the discharge values from the false outflow points 
(white and purple arrows in Figure 3, respectively) to calculate 
the accumulated water flowing into the sub-basin. We then add 
internal runoff to estimate available blue water.

Figure 2  |  Area distribution of HydroBASIN Level 6

Source: WRI.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Area km2

Fr
eq

ue
nc

y

100 101 102 103 105104



TECHNICAL NOTE  |  August 2023  |  7

Aqueduct 4.0: Updated decision-relevant global water risk indicators

Temporal aggregation
One of the advantages of the Aqueduct framework is its ease of 
use. Although time series provide detailed insights, for a priori-
tization method and combined framework, summary indicators 
are preferred. Aqueduct provides chronic water risk information. 
This is very different from near-real-time water risk information 
or a historical assessment. Ideally, each indicator is representative 
of the relative time period—be that baseline or future—without 
anomalies (the exception being the variability indicators, in 
which anomalies are intentionally captured). 

We apply temporal aggregation steps to convert historical time 
series into useful input for the baseline indicator cal culations. 
Aqueduct 4.0’s baseline represents a 40-year period (1979–
2019)18. For water stress and depletion, the long-term trends 
are extracted from the noise using the methodology below. For 
seasonal and interannual variability, the raw time series are used. 

Temporal aggregation for future projections can be found 
“Processing model data” in the next section. Groundwater head 
data are processed sepa rately; see “Groundwater table decline” in 
the “Indicators” section for more information. 

STEP 1: TOTAL WATER USE 

We calculate the total gross demand and total net consumption 
by sum ming up the four sectors (domestic, industrial, irrigation, 
and livestock) for each sub-basin and month ( January 1979–
December 2019). The results are two time series: Gross total 
demand and net total consumption for Janu ary 1979–December 
2019 for each sub-basin. 

STEP 2: SPLIT MONTHS 

We then break up the time series into one series for each month. 
This yields time series of all Januarys between 1979 and 2019, all 
Februarys between 1979 and 2019, and so on to all Decembers 
between 1979 and 2019. We do this for total gross demand, total 
net consumption, and available blue water. 

STEP 3: REGRESSION 

In most sub-basins, the water use data follow a clearly increas-
ing trend. This is caused by increases in under lying drivers such 
as growth in population and gross domestic product (GDP). In 

Figure 3  |  Example of discharge inflow and outflow points

Source: Authors.
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addition, both the demand data19 and supply data can be erratic. 
We try to reduce noise while keeping an accurate representa-
tion of the present value based on the long-term trend. We first 
smooth the data by applying a trailing moving average with a 
window size of 10 years. We then run a Theil-Sen regression20 
on the moving average to capture the trend. We select the point 
intersecting with our target year—2019—to represent the base-
line. The independent variable is time (year), and the dependent 
variable is either gross total withdrawal, net total withdrawal, or 
available blue water. 

Additionally, we restrict the predicted value to the mini mum 
and maximum range of the 10-year moving average window 
values. The predicted value can never exceed the maxi mum of 
the 10-year window values or be lower than the minimum of the 
10-year window functions. 

We opted for a window size of 10 years to capture longer 
climatic and socioeconomic trends while filtering annual 
anomalies. The temporal aggregation steps 1 through 3 for an 
example sub-basin are shown in Figure 4.

STEP 4: MASK ARID AND LOW WATER USE SUB-BASINS 

Aqueduct indicators require robust data as inputs.21 Sub-
basins where data are sparse or very close to zero should 

therefore be handled separately. We identi fied those sub-basins 
using two criteria with thresholds taken from Aqueduct 2.1 
(Gassert et al. 2014): 

A sub-basin is “arid” if annual baseline available water < 
0.03 meters per year (m/yr) 

A sub-basin is “low water use” if annual baseline gross total 
with drawal < 0.012 m/yr 

Data must be below both the arid and low water use thresholds 
to be masked. Monthly data is masked using the annual arid and 
low water use categories. 

Processed water use and water supply
After applying the spatial and temporal aggregation steps, we 
have estimates of gross demand (ww), net consumption (wn), 
and available blue water (ba) for each sub-basin. 

Delta regions and arid and low water use sub-basins will be 
treated accordingly in the indicator calculation. We use the 
aggregated time series of gross total withdrawal, net total 
withdrawal, and available water to calculate water stress, water 
depletion, seasonal variabil ity, and interannual variability.

Figure 4  |  Theil-Sen regression for gross demand on a 10-year moving average window for July in an example basin 
(Erbo Sub-basin [216041])

Source: Authors.
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FUTURE PROJECTIONS
The availability of and competition for water resources around 
the world will be affected by climate change, population growth, 
and economic development. This analysis complements our 
baseline water risk data by providing information on future 
water availability that is relevant for long-term planning, adapta-
tion, and investment by both the private and public sectors.

This section details the methodology used to develop global 
estimates of water supply (available blue water), water use 
(gross demand and net consumption), water stress (the ratio of 
demand to supply), water depletion (the ratio of consumption 
to supply), interannual variability, and seasonal (intra-annual) 
variability for three 30-year periods centered on milestone 
years 2030, 2050, and 2080. Projections of climate variables are 
driven primarily by general circulation models from the Coupled 
Model Intercomparison Project phase 6 (CMIP6) project, and 
socioeconomic variables are based on the Shared Socioeconomic 
Pathways database from the International Institute for Applied 
Systems Analysis. 

Model data used by Aqueduct
The Aqueduct Future Projections are based on a new dataset 
called PCR-GLOWB-based hydrological projection of future 
global water states with CMIP 6 (HYPFLOWSCI6) (Sutan-
udjaja et al. 2023). They use the same model structure and 
classes of data to define water use and supply as the baseline, 
except they are created using different climate forcing data 
and cover greater time periods. HYPFLOWSCI6 uses climate 
forcing data from multiple future scenarios of socioeconomic 
and climate conditions, which are each run through five separate 
climate models. 

SOCIOECONOMIC AND CLIMATE SCENARIOS:

Estimates of each indicator are developed for three socio-
economic and climate scenarios used in CMIP6 (SSP1–2.6, 
SSP3-7.0, and SSP5-8.5). Shared socioeconomic pathways 
(SSPs), indicated by the first number in each scenario (1, 3, and 
5), describe alternative futures of societal development and water 
use. The second number in each scenario (2.6, 7.0, and 8.5) 
indicates the level of radiative forcing (W m−2) through 2100. 
These drive the climate factors in general circulation models 
(GCMs). The SSP pathways were used to project future water 
use, while the SSP/RCP combined pathways were used to 
project future water supply.

SSP1–2.6 represents an “optimistic” scenario limiting the rise in 
average global surface temperatures by 2100 to 1.3°C to 2.4°C 

compared to preindustrial levels (1850–1900) (Arias et al. 2021). 
SSP1 is characterized by sustainable socioeconomic growth: 
stringent environmental regulations and effective institutions, 
rapid technological change and improved resource efficiency, 
and low population growth (Wada et al. 2016). SSP3-7.0 repre-
sents a “business as usual” scenario with temperatures increasing 
by 2.8°C to 4.6°C by 2100. SSP3 is a socioeconomic scenario 
characterized by regional competition and inequality, includ-
ing slow economic growth, weak governance and institutions, 
low investment in the environment and technology, and high 
population growth, especially in developing countries. SSP5-8.5 
represents a “pessimistic” scenario with temperature increases 
up to 3.3°C to 5.7°C. SSP5 describes fossil-fueled development: 
rapid economic growth and globalization powered by carbon-
intensive energy, strong institutions with high investment in 
education and technology but a lack of global environmental 
concern, and the population peaking and declining in the 21st 
century. Each scenario has varying effects on water availability in 
different parts of the world.

GENERAL CIRCULATION MODELS (GCMS):

For each scenario, we ran five GCMs to account for the uncer-
tainty in climate models: GFDL-ESM4, IPSL-CM6A-LR, 
MPI-ESM1–2-HR, MRI-ESM2-0, and UKESM1-0-LL. The 
five GCMs were bias-corrected22 toward the observed climate 
forcing data used for the baseline (Lange 2021, Hempel et 
al. 2013). They were chosen because they represent a span of 
temperature-precipitation variations (e.g., cold-wet). These five 
variations provided a good sample size for model uncertainty 
given our computational limitations23. GCM data are converted 
into PCR-GLOBWB inputs using the methodology described 
in Sutanudjaja et al. (2023). GCM data are prepared for both 
the historic time period (1960–2014) and the three future 
scenarios (2015–2100, each). In all, there are 5 historical runs 
and (5 x 3=) 15 future runs. 

Processing model data
To make the model data suitable as input for the Aqueduct indi-
cator calculation for future projections, we again process the data 
by spatial and temporal aggregations. 

Spatial aggregation
For each future indicator, we aggregate water use and water sup-
ply to HydroBASINS level 6 hydrological sub-basins using the 
same methodology applied to the baseline (see under “Hydro-
logical model”).
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Temporal aggregation
We also follow the baseline methodology (see under “Hydro-
logical model”) to temporally aggregate the future projections 
time series of water supply, demand, and consumption to our 
milestone years: we smooth the data using a 10-year trailing 
moving average and isolate the trend using a Theil-Sen regres-
sion. The only difference is the time periods used:

 ▪ 2014: 1960–2014 (historic GCM data)

 ▪ 2030: 2015–2045 (future GCM data)

 ▪ 2050: 2035–2065 (future GCM data)

 ▪ 2080: 2065–2095 (future GCM data)

We select the regressed value for each milestone year. We 
perform this step for each month in order to generate our 
annual results. 

BIAS CORRECTION:

Each GCM uses unique estimates of climate under a given 
scenario spanning from the pre-industrial age to the year 2100, 
meaning that historical GCM climate forcing data may deviate 
from what actually happened. To correct this, we must adjust the 
future monthly GCM data to our monthly baseline data—spe-
cifically, total gross demand, total net consumption, and available 
blue water. We perform this bias correction in two steps. First, 
we calculate the change between the future GCM output and 
the historical GCM output: 

Processed water use and water supply
After applying the spatial and temporal aggregation steps and 
the bias correction, we have 2030, 2050, and 2080 estimates of 
total gross demand, total net consumption, and available blue 
water for each GCM for each scenario. We use these data to 
calculate future water stress, water depletion, seasonal variability, 
and interannual variability using the indicator methodology 
outlined in “Indicators.”  Then, we find the median, minimum, 
maximum, and standard deviation across the GCMs per 
scenario for each indicator. The median is used as the default 
representation for each scenario. We estimate the uncertainty 
of the GCM data by calculating the coefficient of variation 
of the five GCMs scores per indicator within each catchment 
(Luck et al. 2015). 

Adjusted Future Data =  
Baseline + (Future GCM - Historic GCM)

Future projections limitations
Irrigation data projects crop extents using the IMAGE dataset, 
which ends in 2050 (Doelman et al. 2018). Therefore, crop 
extents beyond 2050 are assumed to remain static to the 2050 
extent (though total irrigation demand may still fluctuate 
beyond 2050 due to varying climatic conditions). This could 
underestimate future (2051–2100) irrigation demand in loca-
tions with historically low levels of irrigation that are likely to 
expand over the next century (like many countries in Africa). 
Likewise, livestock water demand data ends in 2014, and is 
assumed to remain constant through 2100. Livestock water 
demand is the daily drinking water required per animal as a 
function of temperature (Wada et al. 2016) and amounts to less 
than 1 percent of global demand in 2019. Ninety-eight percent 
of an animal’s water footprint comes from the feed they con-
sume (Mekonnen and Hoekstra 2012), which Aqueduct covers 
under irrigation demand. Still, we are underestimating future 
(2020–2100) livestock demand. 

INDICATORS
For each of the 13 indicators in our framework, this section 
offers a description, a calculation of raw values, and a conversion 
to 0–5 scores. This enables us to aggregate the indicators into 
groups, as well as to provide an overall water risk score. For each 
indicator, we also include the key limitations. 

Aqueduct 4.0 uses the United Nations Office for Disaster Risk 
Reduction (UNDRR) risk element terminology of hazard, expo-
sure, and vulnerability. Each indicator is assigned a risk element 
(see Figure 5): 

 ▪ HAZARD: Threatening event or condition (e.g., flood event, 
water stress condition). 

 ▪ EXPOSURE: Elements present in the area affected by the 
hazard (e.g., population, asset, economic value). 

 ▪ VULNERABILITY: The resilience or lack of resilience of 
the elements exposed to the hazard. 

Figure 5  |  Elements of risk

Source: Raw data from UNDRR, modified/aggregated by WRI.

HAZARDRISK EXPOSURE VULNERABILITY

= X X
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Baseline water stress

Description
Baseline water stress measures the ratio of total water demand 
to available renewable surface and groundwater supplies. Water 
demand includes domestic, industrial, irrigation, and livestock 
consumptive and nonconsumptive uses. Available renewable 
water supplies include the impact of upstream consumptive 
water users and large dams on downstream water availability. 
Higher values indicate more competition among users.

Calculation
Baseline water stress is calculated using the postpro cessed gross 
demand and available blue water per sub-basin time series 
from the default PCR-GLOBWB 2 run (covered in “Hydro-
logical model”).

STEP 1: CALCULATE MONTHLY WATER STRESS

In which,

wsm,b = Water stress per month, per sub-basin in [-]

GENERAL:

Name Baseline Water Stress

Subgroup Physical risk quantity

Risk Element R = H x E x V

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Monthly and annual

SOURCE:

Spatial resolution 5 x 5 arc minute grid cells

Temporal resolution Monthly

Temporal range 1979–2019

EXTRA:

Partner organization(s): Utrecht University

Model PCR-GLOBWB 2

Date of publication 2023

wwm,b = Total gross demand per month, per sub-basin in 
[million m3/month]

bam,b = Available blue water per month, per sub-basin in 
[million m3/month] 

This results in 12 time series of water stress (one for each 
month) per sub-basin. Additionally, we limit the raw values to a 
maximum of 1 and a minimum of 0. Note that water resources 
in delta sub-basins are pooled. 

STEP 2: CALCULATE ANNUAL WATER STRESS 

We calculate the annual water stress by applying a weighted 
average of monthly values, with total demand as the weight; 
months with higher demand will have more influence on the 
annual stress value. Months with more demand reflect when the 
human need for water is greatest—it is also when socioeconomic 
dependency for water is most critical (Gassert et al. 2013). The 
annual raw value (wsy,b) is found by multiplying the monthly raw 
value (wsm,b) by the monthly weight (wwm,b), summing, and 
dividing by the sum of the weights across the year (y).

Sub-basins classified as “arid and low water use” are han-
dled separately.

Conversion to risk categories
The risk thresholds are based on Aqueduct 2.1 (Gassert  
et al. 2014).

RAW VALUE RISK CATEGORY SCORE

<10% Low 0–1

10–20% Low-medium 1–2

20–40% Medium-high 2–3

40–80% High 3–4

>80% Extremely high 4–5

Arid and low water use 5
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The raw values are remapped to a 0–5 scale using the fol-
lowing equation: 

Where r is the raw indicator value and score is the indica-
tor score [0–5].

Limitations
All limitations of the underlying data, including those pro-
duced by the PCR-GLOBWB 2 global hydrological model and 
HydroBASINS 6 hydrological sub-basin delineation, apply to 
this indicator. Please see the original publications of these data 
sets for a full list of limitations. 

One of the biggest assumptions is that water resources are 
pooled within each sub-basin. However, in HydroBASINS 6, 
coastal and island sub-basins are often grouped to make the area 
of the sub-basins more homogeneous. The assumption of shared 
water resources might not hold in aggregated coastal sub-basins. 

Although the underlying models have been validated, the results 
are not. Water stress remains subjective and cannot be measured 
directly. The lack of direct validation makes it impossible to 
assess some of the parameters in our calculation, such as the 
length of the input time series, regression method, and optimal 
moving window size.

The water stress indicator presented here does not explic itly take 
into account environmental flow requirements,24 water quality, or 
access to water. Views differ regarding what to include in a water 
stress indicator (Vanham et al. 2018). 

Finally, we should stress that Aqueduct is tailored to large-scale 
comparison of water-related risks. The indica tors have limited 
added value on a local scale.
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STEP 1: CALCULATE MONTHLY WATER DEPLETION

In which,

wdm,b = Water depletion per month, per sub-basin in [-]

wnm,b = Total net consumption per month, per sub-basin in 
[million m3/month]

bam,b = Available blue water per month, per sub-basin in 
[million m3/month] 

This results in 12 time series of water depletion (one for each 
month) per sub-basin. Additionally, we limit the raw values to a 
maximum of 1 and a minimum of 0. Note that water resources 
in delta sub-basins are pooled. 

STEP 2: CALCULATE ANNUAL WATER DEPLETION 

We calculate the annual water depletion by applying a weighted 
average of monthly values, with total net consumption as the 
weight; months with higher consumption will have more 
influence on the annual depletion value. Months with more 
consumption reflect when the human need for water is great-
est—it is also when socioeconomic dependency for water is 
most critical (Gassert et al. 2013). The annual raw value (wda,b) is 
found by multiplying the monthly raw value (wdm,b) by the 
monthly weight (wnm,b), summing, and dividing by the sum of 
the weights across the year (y).

Sub-basins classified as “arid and low water use” are han-
dled separately.

Baseline water depletion

Description
Baseline water depletion measures the ratio of total water 
consumption to available blue water. Total water consumption 
includes domestic, industrial, irrigation, and livestock consump-
tive uses. Available renewable water supplies include the impact 
of upstream consumptive water users and large dams on down-
stream water availability. Higher values indicate larger impact 
on the local water supply and decreased water availability for 
downstream users. 

Baseline water depletion is similar to baseline water stress; 
however, instead of looking at gross water demand (consumptive 
plus nonconsumptive), baseline water depletion is calculated 
using consumptive with drawal only.

Calculation
Baseline water depletion is calculated using the processed total 
net consumption and available blue water per sub-basin time 
series from the default PCR-GLOBWB 2 run (covered in 
“Hydrological model”).

GENERAL:

Name Baseline Water Depletion

Subgroup Physical risk quantity

Risk Element R = H x E x V

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Monthly and annual

SOURCE:

Spatial resolution 5 x 5 arc minute grid cells

Temporal resolution Monthly

Temporal range 1979–2019

EXTRA:

Partner organization(s): Utrecht University

Model PCR-GLOBWB 2

Date of publication 2023
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Conversion to risk categories 
The thresholds are based on Brauman et al. (2016).

We use linear interpolation within each category to remap the 
raw values to a 0–5 scale using the following equation: 

Where r is the raw indicator value and score is the indica-
tor score [0–5].

RAW VALUE RISK CATEGORY SCORE

<5% Low 0–1

5–25% Low-medium 1–2

25–50% Medium-high 2–3

50–75% High 3–4

>75% Extremely high 4–5

Arid and low water use 5

Limitations
See Baseline Water Stress, Limitations (above in this section). 

In addition, we had to omit the categories “dry year” and “sea-
sonal” from Brauman et al. (2016) to make the indica tor suitable 
for the Aqueduct framework.
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Interannual variability

Description
Interannual variability measures the average between-year 
variability of available water supply, including both renewable 
surface and groundwater supplies. Higher values indicate wider 
variations in available sup ply from year to year.

Calculation
Interannual variability is calculated using the available water 
time series from the default PCR-GLOBWB 2 aggregated in 
space but not in time. See “Hydrological model.”

Interannual, or between year, variability is defined as the 
coefficient of variation (CV) of available water for each sub-
basin. The CV is the standard deviation (SD) of the available 
water, divided by the mean. The CV per sub-basin is determined 
for each individual month, as well as annually.

GENERAL:

Name Interannual Variability

Subgroup Physical risk quantity

Risk Element R = H x E x V

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Monthly and annual

SOURCE:

Spatial resolution 5 x 5 arc minute grid cells

Temporal resolution Monthly

Temporal range 1979–2019

EXTRA:

Partner organization(s): Utrecht University

Model PCR-GLOBWB 2

Date of publication 2023

In which,

iavm,b = Interannual variability per month, per 
sub-basin in [-]

cvm,b = Coefficient of variation per month, per 
sub-basin in [-]

bam,b = Available blue water per month, per sub-basin in 
[million m3/year]

Conversion to risk categories
The risk thresholds are based on Aqueduct 2.1 (Gas-
sert et al. 2014).

The raw values are remapped to a 0–5 scale using the fol-
lowing equation: 

Where r is the raw indicator value and score is the indica-
tor score [0–5].

Limitations
See Baseline Water Stress, Limitations (in this section). 

In addition, we have analyzed the full time series of PCR-
GLOBWB 2; that is, 1979 to 2019. We have not analyzed the 
effect of using a different range.

RAW VALUE RISK CATEGORY SCORE

<0.25% Low 0–1

0.25–0.50% Low-medium 1–2

0.50–0.75% Medium-high 2–3

0.75–1.00% High 3–4

>1.00% Extremely high 4–5

score = max(0, min(5,4r))
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Seasonal variability

Description
Seasonal variability measures the average within-year variability 
of available water supply, including both renewable surface and 
groundwater supplies. Higher values indicate wider variations 
of available sup ply within a year.

Calculation
Seasonal variability is calculated using the available water time 
series from the default PCR-GLOBWB aggregated in space but 
not in time. See “Hydrological model.”

First, the available water per month, per sub-basin, is cal culated 
over the entire time series 1979–2019 (40 years).

In which,

bam,b = Average available blue water per month, per sub-
basin in [million m3/year] 

bay,m,b = Available blue water per year month, per sub-basin 
in [million m3/year] 

GENERAL:

Name Seasonal Variability

Subgroup Physical risk quantity

Risk Element R = H x E x V

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution 5 x 5 arc minute grid cells

Temporal resolution Monthly

Temporal range 1979–2019

EXTRA:

Partner organization(s): Utrecht University

Model PCR-GLOBWB 2

Date of publication 2023

The coefficient of variation is calculated using these 12 averages.

In which,

sevb = Seasonal variability per sub-basin in [-]

bam,b = Available water per month, per sub-
basin in [m/month]

Conversion to risk categories
The risk thresholds are based on Aqueduct 2.1 (Gas-
sert et al. 2014).

The raw values are remapped to a 0–5 scale using the fol-
lowing equation: 

Where r is the raw indicator value and score is the indica-
tor score [0–5].

Limitations
See Baseline Water Stress, Limitations (in this section). 

Additionally, the effect of using different lengths of the input 
time series is not examined. The human and cli matic influence 
on available water is likely to be more profound in recent years.

RAW VALUE RISK CATEGORY SCORE

<0.33 Low 0–1

0.33–0.66 Low-medium 1–2

0.66–1.00 Medium-high 2–3

1.00–1.33 High 3–4

>1.33 Extremely high 4–5

score = max(0, min(5,3r))
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Groundwater table decline

Description
Groundwater table decline measures the average decline of the 
groundwater table as the average change for the period of study 
(1990–2014). The result is expressed in centimeters per year 
(cm/yr). Higher values indicate higher levels of unsustainable 
groundwater withdrawals.

Calculation
Groundwater table decline is calculated using the ground water 
heads time series from the PCR-GLOBWB 2 run coupled with 
MODFLOW to account for lateral groundwa ter flow processes. 
This indicator is based on the gridded25 monthly groundwater 
heads between January 1990 and December 2014.26 

The groundwater aquifers contain several geomorphologi cal 
features, which for practical reasons can be divided into sedi-
mentary basins and mountain ranges. In moun tainous areas, 
most materials are hard rock and eventu ally weathered. In the 
PCR-GLOBWB 2 model coupled with MODFLOW, very 
deep groundwater influences the averages in mountainous 
cells and is not representative. These cells are therefore dis-
carded from the calculations following the method in de Graaf 
et al. (2015). 

GENERAL:

Name Groundwater Table Decline

Subgroup Physical risk quantity

Risk Element R = H x E x V

RESULTS:

Spatial resolution Groundwater aquifer (WHYMAP)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution 5 x 5 arc minute grid cells

Temporal resolution Monthly

Temporal range 1960–2014

EXTRA:

Partner organization(s): Deltares, Utrecht University

Model PCR-GLOBWB 2 + MODLFLOW

Date of publication 2019

Mountainous areas are determined by comparing the height of 
the floodplain within a cell with the average elevation of that 
same cell. The elevation of the floodplain is derived from the 30 
× 30 arc second digital elevation data from HydroSheds (Lehner 
et al. 2008). The flood plain elevation is simply the mini-
mum of the input.

In which,

hfloodplain,5’ = Elevation of floodplain in meters for each 5 x 5 
arc minute cell

hDEM 30” = Elevation derived from 30 x 30 arc second digital 
elevation model (DEM) in meters

The average elevation for each 5 arc minute cell is taken directly 
from the HydroSheds data. If the difference between the flood-
plain elevation and the average elevation is greater than 50m, 
the cell is classified as mountainous.

In which,

hfloodplain,5’ = Elevation of floodplain in meters for each 5 x 5 
arc minute cell

hDEM 5’ = Elevation derived from 5 x 5 arc minute DEM in 
meters (approximately 11km at the equator)

The threshold of 50m was chosen as it proved to include 70 
percent of the unconsolidated sediments mapped in the Global 
Lithological Map (Hartmann and Moosdorf 2012). 

After masking the mountainous areas, results are aggre gated to 
groundwater aquifers derived from the World wide Hydrogeo-
logical Mapping and Assessment Pro gramme (WHYMAP) 
data set (BGR and UNESCO 2018). 

The monthly results at the aquifer scale are fitted with a first-
order regression. The slope of this regression line (cm/yr) 
indicates the existence of a downward (or upward) trend. The 
following estimators are used to further assess the trend: (1) 
coefficient of determination and (2) the p value. 
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The coefficient of determination is used to determine whether 
the trend is linear or erratic. A minimum thresh old of 0.9 is 
applied to mask out erratic and error-prone trends. 

For the p value, a maximum threshold of 0.05 is used.

Conversion to risk categories
The risk category thresholds are based on a combination of 
expert judgment and a literature review (Galvis Rodrí-
guez et al. 2017).

Within each category, we use linear interpolation to convert the 
raw values to a 0–5 using the following equation:

Where r is the raw indicator value and score is the indica-
tor score [0–5].

RAW VALUE RISK CATEGORY SCORE

<0 cm/y Low 0–1

0–2 cm/y Low-medium 1–2

2–4 cm/y Medium-high 2–3

4–8 cm/y High 3–4

>8 cm/y Extremely high 4–5

Limitations
The limitations of PCR-GLOBWB 2, MODFLOW, 
WHYMAP, climate forcing, and other input data sets are 
propagated to these results. The results are only validated using 
a literature review of selected aquifers and by com paring the 
results to coarse remote-sensing data. 

The threshold for masking out mountainous areas was set once 
without a sensitivity analysis. The temporal range [1990–2014] 
was selected on the basis of expert judgment and differs from 
some of the other water quantity indica tors that use [1960–
2014] as the input time series. 

See Galvis Rodríguez et al. (2017) for additional limitations.
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Riverine flood risk

Description
Riverine flood risk measures the percentage of population 
expected to be affected by riverine flooding in an average year, 
accounting for existing flood-protection standards. Flood risk 
is assessed using hazard (inundation caused by river overflow), 
exposure (population in flood zone), and vulnerability.27 The 
existing level of flood protection is also incorporated into the 
risk calculation. It is important to note that this indicator 
represents flood risk not in terms of maximum possible impact 
but rather as average annual impact. The impacts from infre-
quent, extreme flood years are averaged with more common, less 
newsworthy flood years to produce the “expected annual affected 
popula tion.” Higher values indicate that a greater propor
tion of the population is expected to be impacted by riverine 
floods on average.

Additional data source Existing flood protection levels

Input spatial resolution State

Input temporal resolution Annual

Input temporal rance 2016

Source FLOPROS (Scussolini et al. 2016)

GENERAL:

Name Riverine Flood Risk

Subgroup Physical risk quantity

Risk Element R = H x E x V

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution 30 x 30 arc minute grid cells

Temporal resolution Annual

Temporal range 2010

EXTRA:

Partner organization(s): Deltares, IVM, PBL, Utrecht University

Model GLOFRIS (Ward et al. 2020)

Date of publication 2019

Calculation
Data on the population impacted by riverine floods are provided 
by Aqueduct Floods at the state/HydroBASIN 6 intersect 
scale (Ward et al. 2020). The data set estimates the average 
number of people to be impacted annually for several flood 
event magnitudes (2, 5, 10, 25, 50, 100, 250, 500, and 1,000 in 
return periods). 

The expected annual affected population is calculated using a risk 
curve (Meyer et al. 2009). To create the curve, the return periods 
are first converted into probabilities (i.e., 1/return period) and 
then plotted on the x axis against the impacted population (Fig-
ure 6). Next, flood protection is added to the graph. The current 
level of flood protection, given in return years, comes from the 
Flood Protection Standards (FLOPROS) model (Scussolini et 
al. 2016). All impacts that fall to the right of the flood protec-
tion line (i.e., impacted by smaller floods) are assumed to be 
protected against floods and are removed from the calculation. 
The expected annual affected population is calculated by integrating 
the area under the curve to the left of the flood protection line. 

The expected annual affected population is calculated for each 
state/HydroBASIN 6 intersect, then aggregated up to the 
HydroBASIN 6 scale. The total population in each state/Hydro-
BASIN 6 intersect is also summed to the HydroBASIN 6 scale 
(Ward et al. 2020). Finally, the raw riverine flood risk score—the 
percentage of popu lation expected to be affected annually by riverine 
floods per HydroBASIN 6—is calculated:

In which,

rfr = Riverine flood risk raw values in [-]

popexp,r,y = Expected annual affected population by riverine 
flooding in [number of people]
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The raw values are remapped to a 0–5 scale using the fol-
lowing equation:

Where r is the raw indicator value and score is the indica-
tor score [0–5].

Limitations
Riverine and coastal flood risks must be evaluated and used 
separately, as the compound risks between river and storm 
surges are not modeled. The data also assume that flood events 
are entirely independent of each other, so the impact from 
overlapping flood events is not considered. Finally, the data do 
not include any indirect impacts from flooding (e.g., disrupted 
transportation, loss of work, etc.).

Conversion to risk categories
The thresholds are based on quantiles, with the exception of the 
basins with no riverine hazard. Basins without a flood hazard are 
given the lowest risk score, 0, and are removed from the rest of 
the data set before the quantiles are calculated.

RAW VALUE RISK CATEGORY SCORE

0 to 1 in 1,000 Low 0–1

1 in 1,000 to 2 in 1,000 Low-medium 1–2

2 in 1,000 to 6 in 1,000 Medium-high 2–3

6 in 1,000 to 1 in 100 High 3–4

More than 1 in 100 Extremely high 4–5

Figure 6  |  Risk Curve Used to Calculate Expected Annual Affected Population from Floods

Source: WRI.
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Coastal flood risk

Description
Coastal flood risk measures the percentage of the popu lation 
expected to be affected by coastal flooding in an average year, 
accounting for existing flood protection standards. Flood risk is 
assessed using hazard (inunda tion caused by storm surge), expo-
sure (population in flood zone), and vulnerability.28 The existing 
level of flood protection is also incorporated into the risk 
calculation. It is important to note that this indicator represents 
flood risk not in terms of maximum possible impact but rather 
as average annual impact. The impacts from infrequent, extreme 
flood years are averaged with more common, less newsworthy 
flood years to produce the “expected annual affected population.” 
Higher values indicate that a greater proportion of the popu
lation is expected to be impacted by coastal floods on average.

Additional data source Existing flood protection levels

Input spatial resolution State

Input temporal resolution Annual

Input temporal rance 2016

Source FLOPROS (Scussolini et al. 2016)

GENERAL:

Name Coastal Flood Risk

Subgroup Physical risk quantity

Risk Element R = H x E x V

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution 30 x 30 arc minute grid cells

Temporal resolution Annual

Temporal range 2010

EXTRA:

Partner organization(s): Deltares, IVM, PBL, Utrecht University

Model GLOFRIS (Ward et al. 2020)

Date of publication 2019

Calculation
Data on the population impacted by coastal floods are provided 
by Aqueduct Floods at the state/HydroBASIN 6 intersect 
scale (Ward et al. 2020). The data set estimates the average 
number of people to be impacted annually for several flood 
event magnitudes (2, 5, 10, 25, 50, 100, 250, 500, and 1,000 in 
return periods). 

The expected annual affected population is calculated using a risk 
curve (Meyer et al. 2009). To create the curve, the return periods 
are first converted into probabilities (i.e., 1/return period) and 
then plotted on the x axis against the impacted population 
(Figure 6). Next, vulner ability—or flood protection—is added 
to the graph as a vertical line. The current level of flood protec-
tion, given in return years, comes from the FLOPROS model 
(Scus solini et al. 2016). All impacts that fall to the right of 
the flood protection line (i.e., impacted by smaller floods) are 
assumed to be protected against floods and are removed from 
the calculation. The expected annual affected population is calcu-
lated by integrating the area under the curve to the left of the 
flood protection line.

The expected annual affected population is calculated for each 
state/HydroBASIN 6 intersect and then aggregated up to the 
HydroBASIN 6 scale. The total population in each state/Hydro-
BASIN 6 intersect is also summed to the HydroBASIN 6 scale 
(Ward et al. forthcoming). Finally, the raw coastal flood risk 
score—the percentage of popu lation expected to be affected annually 
by coastal floods per HydroBASIN 6—is calculated:

In which,

cfr = Coastal flood risk raw values in [-]

popexp,r,y = Expected annual affected population by coastal 
flooding in [number of people]
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Conversion to risk categories
The thresholds are based on quantiles, with the excep tion of the 
basins with no coastal hazard. Basins without a flood hazard are 
given the lowest risk score, –1, and removed from the rest of the 
data set before the quantiles are calculated.

The raw values are remapped to a 0–5 scale using the fol-
lowing equation:

Where r is the raw indicator value and score is the indica-
tor score [0–5].

RAW VALUE RISK CATEGORY SCORE

0 to 9 in 1,000,000 Low 0

9 in 1,000,000 to 7 
100,000

Low-medium 1–2

7 in 100,000 to 3 in 
10,000

Medium-high 2–3

3 in 10,000 to 2 in 1,000 High 3–4

More than 2 in 1,000 Extremely high 4–5

Limitations
Riverine and coastal flood risks must be evaluated and used 
separately, as the compound risks between river and storm 
surges are not modeled. The data also assume that flood events 
are entirely independent of each other, so the impact from 
overlapping flood events is not considered. Finally, the data do 
not include any indirect impacts from flooding (e.g., disrupted 
transportation, loss of work, etc.).
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Drought risk

Description
Drought risk measures where droughts are likely to occur, the 
population and assets exposed, and the vulner ability of the 
population and assets to adverse effects. Higher values indicate 
higher risk of drought.

Calculation
The drought risk indicator is based on Carrão et al. (2016) and 
is used with minimal alterations. Drought risk is assessed for 
the period 2000–2014 and is a combina tion of drought hazard, 
drought exposure, and drought vulnerability. 

Risk = hazard × exposure × vulnerability 

The methodology is explained in Carrão et al. (2016): 

Drought hazard is derived from a non-parametric analysis of 
historical precipitation deficits at the 0.5 [degree resolution]; 
drought exposure is based on a non-parametric aggregation of 
gridded indi cators of population and livestock densities, crop 
cover and water stress; and drought vulnerability is computed as 
the arithmetic composite of high level factors of social, economic 
and infrastruc tural indicators, collected at both the national and 
sub-national levels. 

GENERAL:

Name Drought Risk

Subgroup Physical risk quantity

Risk Element R = H x E x V

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution 5 x 5 arc minute grid cells 

Temporal resolution Annual

Temporal range 2000–2014

EXTRA:

Partner organization(s): IRC

Model Various

Date of publication 2016

The hazard, exposure, vulnerability, risk, and no-data mask data 
available at 5 × 5 arc minute resolution are averaged for each 
hydrological sub-basin.

In which,

drsub-basin = Drought risk per sub-basin

npix = Number of pixels per sub-basin

drpix = Drought risk per pixel

Conversion to risk categories
The risk categories are derived from Carrão et al. (2016):

The raw values are remapped to a 0–5 scale using the fol-
lowing equation:

Where r is the raw indicator value and score is the indica-
tor score [0–5].

Limitations
Many of the indicators in the Aqueduct water risk frame work 
represent a hazard. Some indicators, including drought risk, 
add exposure and vulnerability. Aqueduct combines these risk 
elements into a single framework. 

The drought risk indicator does not consider hydrological 
drought and excludes associated risks such as unnavigable rivers. 

Other Aqueduct risk categories are typically skewed toward 
the higher side, with the category “extremely high” as the top 
category. The drought risk indicator has not been interpreted yet 
and is therefore presented at a low–high scale instead of low–
extremely high. 

See Carrão et al. (2016) for limitations of the different risk ele-
ments (hazard, exposure, vulnerability) and the input data sets.

RAW VALUE RISK CATEGORY SCORE

0.0–0.2 Low 0

0.2–0.4 Low-medium 1–2

0.4–0.6 Medium 2–3

0.6–0.8 Medium-high 3–4

0.8–1.0 High 4–5

score = 5r
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Untreated connected wastewater

Description
Untreated connected wastewater measures the percent age of 
domestic wastewater that is connected through a sewerage 
system and not treated to at least a primary treatment level. 
Wastewater discharge without adequate treatment could expose 
water bodies, the general public, and ecosystems to pollutants 
such as pathogens and nutrients. The indicator compounds 
two crucial elements of wastewater management: connection 
and treatment. Low connection rates reflect households’ lack 
of access to public sewerage systems; the absence of at least 
primary treatment reflects a country’s lack of capacity (infra-
structure, institutional knowledge) to treat wastewater. Together 
these factors can indicate the level of a country’s current capacity 
to manage its domestic wastewater through two main pathways: 
extremely low connection rates (below 1 percent), and high 
connection rates with little treatment. Higher values indicate 
higher per centages of point source wastewater discharged 
without treatment.

Calculation
Sewerage connection and wastewater treatment data come 
from a white paper published by the International Food Policy 
Research Institute (IFPRI) and Veolia (Xie et al. 2016). In 
brief, Xie et al. aggregate three of the leading research papers 

GENERAL:

Name Untreated Connected Wastewater

Subgroup Physical risk quantity

Risk Element R = H x E x V

RESULTS:

Spatial resolution Country

Temporal resolution Annual baseline

SOURCE:

Spatial resolution Country

Temporal resolution Annual

Temporal range 2000–2010

EXTRA:

Partner organization(s): IFPRI, Veolia

Model Various

Date of publication 2016

on country-level connection and treatment rates into one data 
set through a hierarchical methodology. The data include the 
percentage of house holds connected to sewerage systems (percent 
connected), and the percentage of wastewater connected left 
untreated (i.e., not treated using primary, secondary, or tertiary 
treatments) (percent untreated). 

The calculation is based on the Environmental Perfor mance 
Index’s Wastewater Treatment (WWT) indicator 
(Wendling et al. 2018):

WWT examines the performance of wastewater treatment 
(Wendling et al. 2018). The untreated, connected waste water 
indicator reverses the WWT to instead examine the hazard:

In which,

UCW = Unimproved/connected wasterwater 
raw value in [%]

c = Percent connected wastewater in [%]

u = Percent untreated wastewater in [%]

Conversion to risk categories
The risk thresholds are based on quantiles, with the exception of 
the “low to no wastewater connected” thresh old. All data 
marked in this category are given the highest risk score and 
removed from the rest of the data set before the quantiles 
are calculated.

WWT = percent treated to at least primary * percent connected

RAW VALUE RISK CATEGORY SCORE

<30% Low 0

30–60% Low-medium 1–2

60–90% Medium-high 2–3

90–100% High 3–4

100% Extremely high 4–5

Low to no wastewater 
connected

5
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The raw values are remapped to a 0–5 scale using the fol-
lowing equation:

Where r is the raw indicator value and score is the indica-
tor score [0–5].

Limitations
Important sources of water pollution, such as industrial waste 
and agricultural runoff, are not included. Waste water that may 
be treated on-site, such as with private septic tanks, is also not 
captured due to a lack of available data. In addition, the severity 
of water pollution, which depends on the magnitude of loadings 
of pollutants and dilution capacity of receiving water bodies, 
is not repre sented (from a 2017 personal communication with 
Xie). This indicator also does not account for all water pollution 
sources, as it is focused primarily on household connec tion rates.
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indicate higher levels of excess nutrients with respect to silica, 
creat ing more favorable conditions for harmful algal growth 
and eutrophication in coastal waters downstream.

Calculation
The calculation described below is based on Billen and Garnier’s 
(2007) Indicator of Coastal Eutrophication Potential (ICEP) 
methodology. The nutrient data come from Bouwman et al. 
(2015). In short, the data are based on the Global NEWS 2 
model (Mayorga et al. 2010) and aligned to Simulated Topo-
logical Network basins (Vörösmarty et al. 2000). The NEWS 
2 model uses biophysical, natural, and anthropogenic (both 
point and nonpoint) nutrient sources, along with in-watershed 
and in-river removal processes, to derive global nutrient yields 
(Mayorga et al. 2010). Total N and P fluxes are calculated by 
summing NEWS 2 nutrient yield data for dissolved organic, 
dissolved inorganic, and particulate nutrients. Si fluxes are 
simply the dissolved inorganic Si yields in the basin.

The calculation is based on the Redfield molar ratio (C:N:P:Si = 
106:16:1:20), which is a representation of the approximate 
nutrient requirement of marine diatoms (Bil len and 
Garnier 2007):

In which,

CEP = Coastal eutrophication potential [kg 
C-equivalent km2/day]

jn = Mean flux of total nitrogen delivered at the outlet of the 
river basin [kg N/km2/yr]

jp = Mean flux of total phosphorus delivered at the outlet of 
the river basin [kg P/km2/yr]

jSi = Mean flux of dissolved silica delivered at the outlet of 
the river basin [kg Si/km2/yr]

N = Molar mass of nitrogen [14g/mol]

Si = Molar mass of silica [28g/mol]

P = Molar mass of phosphorus [14g/mol]

A negative value indicates that silica is present in excess over the 
limiting nutrient and thus suggests the absence of eutrophica-
tion. A positive value indicates an excess of nutrients over the 

Coastal eutrophication potential

Description
Coastal eutrophication potential (CEP) measures the potential 
for riverine loadings of nitrogen (N), phospho rus (P), and silica 
(Si) to stimulate harmful algal blooms in coastal waters. The 
CEP indicator is a useful metric to map where anthropogenic 
activities produce enough point-source and nonpoint-source 
pollution to potentially degrade the environment. When N and 
P are discharged in excess over Si with respect to diatoms, a 
major type of algae, undesirable algal species often develop. The 
stimulation of algae leading to large blooms may in turn result 
in eutrophication and hypoxia (excessive biological growth and 
decomposition that reduces oxygen available to other organ-
isms). It is therefore possible to assess the potential for coastal 
eutrophication from a river’s N, P, and Si loading. Higher values 

Additional data source STN Basins

Input spatial resolution 30 x 30 arc seconds

Input temporal resolution Annual

Input temporal rance 2000

Source Vörösmarty et al. (2000)

GENERAL:

Name Coastal Eutrophication Potential

Subgroup Physical risk quality

Risk Element R = H x E x V

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution Simulated Topological Network (STN)

Temporal resolution Annual

Temporal range 2000

EXTRA:

Partner organization(s): Utrecht University, Washington State 
University

Model NA

Date of publication 2016
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potential for diatom growth, suggest ing suitable conditions for 
the growth of harmful algae (Garnier et al. 2010). 

As a final step, the results are aggregated to HydroBASIN level 
6 to align the indicator with the remainder of the framework.

Conversion to risk categories
The thresholds used to convert raw values into risk scores are 
based on the suggested risk categories of the Trans boundary 
Water Assessment Programme (TWAP) for ICEP (IOC-
UNESCO and UNEP 2016), with one adjust ment: the 
boundary between TWAP’s low and medium categories was 
increased from –1 to 0 to better reflect the elevated risk warn-
ing in Aqueduct.

RAW VALUE RISK CATEGORY SCORE

<-5 Low 0–1

-5–0 Low-medium 1–2

0–1 Medium-high 2–3

1–5 High 3–4

>5 Extremely high 4–5

The raw values are remapped to a 0–5 scale using the fol-
lowing equation:

Where r is the raw indicator value and score is the indica-
tor score [0–5].

Limitations
Eutrophication can also impact freshwater, but a global data 
set for freshwater eutrophication potential is not cur rently 
available. Therefore, the indicator does not reflect the risk of 
eutrophication upstream of the coastal zone. In addition, the 
index calculation does not account for shifts in seasonality or the 
characteristics of the receiving water body.
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Unimproved/No drinking water

Description
Unimproved/no drinking water reflects the percent age of the 
population collecting drinking water from an unprotected dug 
well or spring, or directly from a river, dam, lake, pond, stream, 
canal, or irrigation canal (WHO and UNICEF 2017). Specifi-
cally, the indicator aligns with the unimproved and surface water 
categories of the Joint Monitoring Programme ( JMP)—the 
lowest tiers of drink ing water services. Higher values indi
cate areas where people have less access to safe drinking 
water supplies.

Calculation
Data for this indicator come from the 2015 drinking water 
access rates published by JMP (WHO and UNICEF 2017). 
The statistics from JMP’s “at least basic” and “limited” fields 

Additional data source Urban extents Gridded population

Input spatial resolution 30 arc seconds 30 arc seconds

Input temporal resolution Annual Annual

Input temporal rance 2010 2010

Source van Huijstee et al. (2018) van Vuuren et al. (2007)

GENERAL:

Name Unimproved/No Drinking Water

Subgroup Regulatory and reputational risk

Risk Element R = H x E x V

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution Country (rural/urban)

Temporal resolution Annual

Temporal range 2015

EXTRA:

Partner organization(s): JMP

Model NA

Date of publication 2017

are summed to represent the percentage of the population 
with access to improved drinking water. The improved rate is 
then inverted into the unimproved/no access rate by subtracting 
improved from 100 percent. This is done for the national, rural, 
and urban averages in each country. The national average is used 
to fill in any missing rural or urban averages. 

The unimproved/no access rate is matched to each Aque duct 
geometry (intersect of states, HydroBASIN 6, and aquifers; see 
6.1) using the International Organization for Standardization 
(ISO) codes provided by the Database of Global Administrative 
Areas (GADM) (“GADM Metadata” n.d.).

Rural and urban populations are calculated for each Aqueduct 
geometry. Rural and urban populations come from a gridded 
2010 population data set produced by the Netherlands Envi-
ronmental Assessment Agency (PBL) (van Vuuren et al. 2007). 
The gridded population data set is parsed into rural and urban 
populations using a 2010 urban extent data layer (van Huijstee 
et al. 2018) and then summed by Aqueduct geometry. 

The rural and urban unimproved/no access rate is mul tiplied by 
the rural and urban populations, respectively, to find the number of 
people with unimproved/no access to drinking water in each 
Aqueduct geometry. The rural and urban totals are then summed 
and aggregated to the HydroBASIN 6 scale, along with total 
population. Finally, the raw score—the weighted percentage of 
population with unimproved/no access per HydroBASIN 6—
is calculated:

In which,

UDW = Unimproved/no drinking water raw value in [-]

rrural = Rural unimproved/no access to drinking 
water rate in [-]

rurban = Urban unimproved/no access to drinking 
water rate in [-]

poprural = Rural population in [number of people]

popurban = Urban population in [number of people]

poptot = Total population in [number of people]
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Conversion to risk categories
The risk thresholds are based on Aqueduct 2.1 (Gas-
sert et al. 2014).

The raw values are remapped to a 0–5 scale using the fol-
lowing equation:

Where r is the raw indicator value and score is the indica-
tor score [0–5].

RAW VALUE RISK CATEGORY SCORE

<2.5% Low 0–1

2.5–5.0% Low-medium 1–2

5.0–10.0% Medium-high 2–3

10.0–20.0% High 3–4

>20.0% Extremely high 4–5

Limitations
The unimproved/no drinking water indicator is presented at 
a finer resolution than originally published by JMP under the 
assumption that access rates among rural and urban communi-
ties are consistent throughout a country. The methodology 
fails to account for regional and local differences in access 
within countries.
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Unimproved/No sanitation 

Description
Unimproved/no sanitation reflects the percentage of the popula-
tion using pit latrines without a slab or platform, hanging/
bucket latrines, or directly disposing human waste in fields, 
forests, bushes, open bodies of water, beaches, other open spaces, 
or with solid waste (WHO and UNICEF 2017). Specifically, 
the indicator aligns with JMP’s unimproved and open defecation 
categories— the lowest tier of sanitation services. Higher values 
indicate areas where people have less access to improved 
sanitation services.

GENERAL:

Name Unimproved/No Drinking Sanitation

Subgroup Regulatory and reputational risk

Risk Element R = H x E x V

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution Country (rural/urban)

Temporal resolution Annual

Temporal range 2015

EXTRA:

Partner organization(s): JMP

Model NA

Date of publication 2017

Additional data source Urban extents Gridded population

Input spatial resolution 30 arc seconds 30 arc seconds

Input temporal resolution Annual Annual

Input temporal rance 2010 2010

Source van Huijstee et al. (2018) van Vuuren et al. (2007)

Calculation
Data for this indicator come from the 2015 sanitation access 
rates published by JMP (WHO and UNICEF 2017). Statistics 
from JMP’s “at least basic” and “limited” fields are summed 
to represent the percentage of the population with access to 
improved sanitation. The improved rate is then inverted into the 
unimproved/no access rate by subtracting improved from 100 
percent. This is done for the national, rural, and urban averages 
in each country. The national average is used to fill in any miss-
ing rural or urban averages. 

The unimproved/no access rate is matched to each Aque duct 
geometry (intersect of states, HydroBASINS 6, and aquifers; see 
6.1) using the International Organization for Standardization 
(ISO) codes provided by GADM (“GADM Metadata” n.d.). 

Rural and urban populations are calculated for each Aqueduct 
geometry. Rural and urban populations come from a gridded 
2010 population data set produced by PBL (van Vuuren et al. 
2007). The gridded population data set is parsed into rural and 
urban populations using a 2010 urban extent data layer (van 
Huijstee et al. 2018), and then summed by Aqueduct geometry.

The rural and urban unimproved/no access rate is multiplied by 
the rural and urban populations, respec tively, to find the number 
of people with unimproved/no access to sanitation in each 
Aqueduct geometry. The rural and urban totals are then summed 
and aggregated to the HydroBASINS 6 scale, along with total 
population. Finally, the raw score—the weighted percentage of 
popu lation with unimproved/no access per HydroBASINS 6—
is calculated:

In which,

USA = Unimproved/no sanitation raw value in [-]

rrural = Rural unimproved/no access to sanitation rate in [-]

rurban = Urban unimproved/no access to drinking 
water rate in [-]

poprural = Rural population in [number of people]

popurban = Urban population in [number of people]

poptot = Total population in [number of people]
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Conversion to risk categories
The risk thresholds are based on Aqueduct 2.1 (Gas-
sert et al. 2014).

The raw values are remapped to a 0–5 scale using the fol-
lowing equation:

Where r is the raw indicator value and score is the indica-
tor score [0–5].

RAW VALUE RISK CATEGORY SCORE

<2.5% Low 0–1

2.5–5.0% Low-medium 1–2

5.0–10.0% Medium-high 2–3

10.0–20.0% High 3–4

>20.0% Extremely high 4–5

Limitations
Unimproved/no sanitation is presented at a finer reso lution 
than is originally published by JMP under the assumption that 
access rates among rural and urban com munities are consistent 
throughout a country. The meth odology fails to account for 
regional and local differences in access within countries.
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Peak RepRisk country ESG risk index

Description
The Peak RepRisk country ESG risk index quantifies business 
conduct risk exposure related to environmental, social, and gov-
ernance (ESG) issues in the corresponding country. The index 
provides insights into potential finan cial, reputational, and com-
pliance risks, such as human rights violations and environmental 
destruction. RepRisk is a leading business intelligence provider 
that specializes in ESG and business conduct risk research for 
companies, projects, sectors, countries, ESG issues, NGOs, and 
more, by leveraging artificial intelligence and human analysis 
in 20 languages. WRI has elected to include the Peak RepRisk 
country ESG risk index in Aqueduct to reflect the broader 
regulatory and reputational risks that may threaten water 
quantity, quality, and access. While the underlying algorithm is 
proprietary, we believe that our inclusion of the Peak RepRisk 
country ESG risk index, normally unavailable to the public, is 
a value-add to the Aqueduct community. The peak value equals 
the high est level of the index in a given country over the last two 
years. The higher the value, the higher the risk exposure.

Calculation
RepRisk screens over 80,000 media, stakeholder, and third-party 
sources daily to identify and analyze ESG-related risk incidents 
and quantify them into the Peak RepRisk country ESG risk 

GENERAL:

Name Peak RepRisk Country EDG Risk Index

Subgroup Regulatory and reputational risk

Risk Element R = H x E x V

RESULTS:

Spatial resolution Country

Temporal resolution Annual baseline

SOURCE:

Spatial resolution Country

Temporal resolution Annual

Temporal range 2016–2018

EXTRA:

Partner organization(s): RepRisk

Model NA

Date of publication 2018

index (RepRisk n.d.). The results of the screening process are 
delivered to the RepRisk team of analysts, who are responsible 
for curat ing and analyzing the information. They hand select the 
items, give each risk incident a score (based on severity, source, 
and novelty), and write a risk summary. Before the risk incident 
is published, a senior analyst runs a quality check to ensure that 
the process has been completed in line with RepRisk’s strict, 
rules-based methodology. After the senior analyst has given her 
or his approval, the final step in the process, the quantification 
of the risk, is per formed through data science. The Peak RepRisk 
country ESG risk index takes into consideration the impact of a 
country’s risk incidents within the last two years and the average 
of a country’s Worldwide Governance Indica tors. The data used 
in Aqueduct 3.0 cover October 2016 through October 2018. To 
learn more about RepRisk, please visit https://www.reprisk.com/
our-approach or contact RepRisk.

Conversion to risk categories
The risk thresholds are based on guidance from RepRisk 
(RepRisk n.d.).

The raw values are remapped to a 0–5 scale using the fol-
lowing equation:

Where r is the raw indicator value and score is the indica-
tor score [0–5].

RAW VALUE RISK CATEGORY SCORE

<25% Low 0–1

25–50% Low-medium 1–2

50–60% Medium-high 2–3

60–75% High 3–4

>75% Extremely high 4–5

https://www.reprisk.com/our-approach
https://www.reprisk.com/our-approach
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COUNTRY AND STATE 
AGGREGATION
The updated country and state aggregations of the baseline and 
future projection data follow the weighted aggregation method-
ology published in Gassert et al. 2013. We provide an excerpt of 
their rationale and methods here for your convenience:

Most water-related decisions are made across political or 
administrative boundaries, creating a demand for simple and 
robust water information to support decision making at the 
administrative level. Governments devise policies to manage 
water resources within their borders and can use country indica-
tors as a statistic against which to benchmark themselves. Many 
financial institutions divide their portfolios by country, and thus 
require national-level water data to evaluate portfolio exposure 
to water-related risks. 

However, accurately assessing the state of water resources across 
administrative boundaries is a significant challenge; and simple, 
comparable, and robust water information to support decision 
making at that level remains sparse. The spatial variation of 
water resources complicates the development of meaningful 
country and basin-level indicators. As opposed to other resources 
such as forests and agricultural lands, whose stationarity simpli-
fies measurement and management, water cannot be accounted 
for by using only administrative boundaries. Even within small 
administrative regions, hydrological conditions may vary from 
lush rainforest to dry prairie. Transboundary lakes and rivers 
further complicate water accounting, as special efforts must be 
made to avoid double counting the water supply, they provide 
across regions. 

The Aqueduct Water Risk Atlas (Aqueduct) first models global 
water-risk indicators at a relatively granular hydrological 
catchment scale. In this analysis WRI then employs a weighted 
aggregation methodology that brings Aqueduct’s catchment-level 
information up to the country and state levels. This methodology 
addresses each of the challenges described above by starting with 
indicators that were computed within basic hydrological units, 
and assigning spatially explicit weights to reflect the importance 
of the specific areas based on where water is being used. From 
these calculations, WRI generated estimates of the average 
level of exposure to Aqueduct’s baseline water stress indicator 
for all countries.

Inputs
This section details the methodology to aggregate Aqueduct 
indicators from the sub-basin level to state and country borders. 
The methodology requires three inputs: gridded weights to 
define where water is being used, an Aqueduct indicator score to 
rescale, and target regions (state and country borders). 

Gridded weights
The gross demand data is used to indicate where human need 
for water is greatest—it is also where socioeconomic dependency 
for water is most critical (Gassert et al. 2013). Areas with higher 
water demand will have more influence over the final aggre-
gated score. We use the following gridded demand data sets 
from PCR-GLOBWB 2:

Baseline gross demand for four sec tors: domestic, industrial, 
irrigation, and livestock. The 4 gridded data sets are available for 
each month between January 1960 and December 2019. 

Projected gross demand for four sec tors—domestic, industrial, 
irrigation, and livestock—available for each month between 
January 1960 and December 2100. Domestic, industrial, and 
livestock demand vary among the three future scenarios, mean-
ing there are 3 data sets per demand type for every time step. 
Irrigation29 also varies by GCM (5 total) within each scenario, 
meaning there are (5 x 3=) 15 irrigation data sets available for 
every time step. See “Future projections” for more details on the 
future projections data. 

Aqueduct indicators
Water stress measures the competition over water resources and 
is an effective metric to evaluate water-related risks at the state 
and country levels. We take the water stress score—the normal-
ized version of the raw data—for the baseline, 2030, 2050, and 
2080. See the first section of “Indicators” for more details on 
how the water stress score is calculated. 

Target regions
Our target geometries are state and country borders. We use 
GADM Level 1 data (GADM Metadata n.d.) to define the 
borders. These are state borders, which inherently also contain 
country borders. We intersect the GADM Level 1 data with 
the HydroBASIN level 6 data (sub-basins used by Aqueduct) to 
traverse between the two systems. 
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Figure 7  |  Examples of the Three Spatially Explicit Inputs

Notes: a. Source indicators: baseline water stress; b. Gridded weights: total water withdrawal; c. Target regions: country boundaries.

Source: WRI Aqueduct.

A B C

Weighted aggregation
Processing gridded weights
First, we sum the gridded gross demand monthly layers into 
annual data. Then, we follow the same methodology described 
in the Spatial aggregation of water use section (in 2.3.1)—we 
resample, convert flux to volume, and sum per target geometry. 
The only difference is we use the state/sub-basin intersect as the 
target geometry rather than the sub-basins. Next, we then sum-
marize the data by the following milestone years:

 ▪ Baseline: 1979–2019 (historic observed climate forcing)

 ▪ 2014: 1960–2014 (historic GCM climate forcing)

 ▪ 2030: 2015–2045 (future GCM climate forcing) 

 ▪ 2050: 2035–2065 (future GCM climate forcing)

 ▪ 2080: 2065–2095 (future GCM climate forcing)

To do this, we follow the Temporal Aggregation steps outlined in 
“Hydrological model”—we calculate total demand by sum-
ming sectoral demand, smooth the data using a 10-year moving 
average, and apply a Theil Sen regression—with two exceptions: 
(1) we do not split the data by months because we are only 
using annual data, and (2) we perform the temporal aggregation 
of the individual sectors as well as total demand. Finally, we 
bias-correct the projected demand data to the baseline using the 
methodology outlined in “Future projections.” For the projected 
demand, we use the median value of the five GCMs to represent 
each scenario. 

In the end, we have five measures of gross demand (total, 
domestic, industrial, irrigation, livestock) for five time periods 
(baseline, 2014, 2030, 2050, and 2080) for the three SSP sce-
narios (for the future periods). 

Applying the weighted average
We compute the average water stress score for every target 
region (i.e., states and countries) using a weighted average 
approach, where the weight is water demand. Following Gassert 
et al. 2013, the weighted mean indicator value (sr) is found by 
multiplying the sub-basin indicator (sp) by the state-sub-basin 
weight (wp), summing, and dividing by the sum of the weights 
across the entire administrative region (r).
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GROUPED AND OVERALL 
WATER RISK
After calculating the 13 indicators and converting them to a 
uniform 0–5 scale, we can calculate the grouped and overall 
water risks (composite indices). See Figure 1 for an over-
view of the groups.

Geometries
Each of the 13 indicators is calculated at one of three different 
spatial scales: hydrological sub-basin, country, or groundwater 
aquifer. See “results: spatial resolution” in the summary table 
of each indicator. To combine the indicators into one frame-
work, we take the union of the three geometries. The resulting 
geometries are a unique combination of a hydrological basin, 
groundwater aqui fers, and an administrative boundary.

Weighted aggregation
The subgroups (physical risk quantity, physical risk qual ity, and 
regulatory and reputational risk) and overall risks are calculated 
by taking a weighted average of the indica tors that belong to 
each subgroup. 

Exposure to water-related risks varies with the charac teristics 
of water users. To obtain aggregated water risk scores, users can 
modify the weight of each indicator to match their exposure 
to the different aspects of water risk. There are five weights, or 
descriptors of relevance, on a base 2 exponential scale. This is 
preferred over a linear scale because of the human tendency to 
categorize inten sity by orders of magnitude of difference (Tri-
antaphyllou 2010). Users can also exclude indicators completely 
from aggregation. See Table 2 for an overview of the weights.

Users have three options for the weighting scheme: default, 
industry-specific, or custom. 

Default weighting scheme 
To determine a default set of indicator weights, we used input 
from six staff water experts following the principles of the 
Delphi technique. This technique uses a series of intensive 
questionnaires interspersed with controlled opinion feedback 
to obtain the most reliable consensus of opinion from a group 
of experts (Rowe and Wright 1999). The Delphi technique is 
intended for use in judgment situ ations; that is, ones in which 
pure model-based statistical methods are not practical or pos-
sible because of the lack of appropriate historical data, and thus 
some form of human judgment input is necessary (Dalkey and 
Helmer 1963). The lack of consistent information on exposure 

Table 2  |  Industry or user relevance weights and  
their descriptions

LEGEND WEIGHT INTERPRETATION

No weight 0 Not relevant 

Very low 0.25 Represents very low relevance to 
the industry or user

Low 0.5 Represents low relevance to the 
industry or user

Medium 1 Represents medium relevance to 
the industry or user

High 2 Represents high relevance to the 
industry or user

Very high 4 Represents very high relevance 
to the industry or user

Source: WRI.

to water risks and the subjective nature of indicator weights 
made this technique an ideal fit. The results of the default 
weighting scheme can be found in the first column of Table 3. 

Industry-specific weighting scheme 
Additionally, we developed preset weighting schemes for nine 
industry sectors on the basis of information provided in corpo-
rate water disclosure reports and input from industry experts 
to reflect the risks and challenges faced by each water-intensive 
sector. For each industry, we modified the default indicator 
weights on the basis of the relative importance of each indicator 
to the industry using information disclosed by companies on 
their exposure to, and losses from, water-related risks. To vali-
date the industry-sector preset weighting schemes, we presented 
preliminary weighting schemes to industry representa tives 
from the nine sectors and solicited feedback on the relative 
importance of each indicator for their sector. The results can be 
found in Table 3. 

Custom weighting scheme 
In the online tool, users can specify their own custom 
weighting scheme. 

Using the weighting schemes, grouped water risk scores can be 
calculated. The relative weight of each indicator is illustrated in 
Figure 7. The definition for each subgroup is listed below: 
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Physical Risk Quantity 
Physical Risk Quantity measures risk related to too little or 
too much water by aggregating all selected indicators from the 
physical risk quantity category. Higher values indicate higher 
water quantity risks.

Physical Risk Quality 

Physical Risk Quality measures risk related to water that is unfit 
for use by aggregating all selected indicators from the Physi-
cal Risk Quality category. Higher values indicate higher water 
quality risks. 

Regulatory and Reputational Risk 

Regulatory and Reputational Risk measures risk related to 
uncertainty in regulatory change, as well as conflicts with the 
public regarding water issues. Higher values indicate higher 
regulatory and reputational water risks. 

Finally, the three grouped water risk scores can be used to 
determine the overall water risk score. The sums of the weights 
are used to calculate the relative contribution of each group. 

Overall Water Risk 

Overall Water Risk measures all water-related risks, by aggre-
gating all selected indicators from the Physical Risk Quantity, 
Physical Risk Quality, and Regulatory and Reputational Risk 
categories. Higher values indicate higher water risk.

LIMITATIONS
Not every aspect of water risk has usable global data sets 
enabling it to be incorporated into our framework. Certain 
important elements are partially missing from the frame work, 
such as water management and governance.30 

The local social dimensions of water risks are not incorpo-
rated into this framework and database. Policy, regulation, and 
response to water crises are paramount in estimating water risks 
and fully understanding their impacts. In the end, each region 
or location’s ability to cope with water-related issues will affect 
its water risk. 

Several limitations are associated with the framework (com-
posite index) approach. First, it requires mapping the indicators 
to comparable (0–5) scale, thereby losing infor mation such as 
absolute values. The second limitation, linked to the first, is that 
we combined data with various spatial and temporal resolutions 
and ranges into a single framework. Third, there are only two 

and three indica tors in the quality and regulatory and reputa-
tional groups, respectively. This makes these groups sensitive to 
errors in the underlying data. We provide industry and custom 
weighting to mitigate this limitation, but this requires the user 
to understand the data. The framework’s water qual ity indicators 
do not reflect the full range of water quality threats but focus 
on nutrient pollution. The framework does not endorse framing 
water-quality solutions solely around coastal eutrophication or 
municipal wastewater. A fourth limitation of the framework 
approach is the mixing of risk types. The framework is incon-
sistent in including the exposure and vulnerability layers for 
all indicators. 

In addition to the limitations of the framework approach, 
each indicator’s baseline and future projections come with its 
own limitations. For the indicator-and-projection-specific 
limitations, please see the relevant sections above and the 
associated literature. Since many of the indicators rely on the 
PCR-GLOBWB 2 hydrologi cal model and HydroBASINS 
6 (hydrological sub-basins), some of these specific limitations 
are copied below.

Coastal sub-basins and islands in HydroBASINS 6 are often 
grouped for various reasons explained in Lehner et al. (2008). 
This grouping is coarse and results in inaccura cies, primarily 
when water demand can be satisfied using remote water supply. 

PCR-GLOBWB 2 has no means to model interbasin trans fer. 
Interbasin transfer happens when demand in one sub-basin 
is satisfied with supply from another sub-basin that is not 
upstream. Many major metropolitan areas source their water 
from adjacent sub-basins. Thus, baseline water stress in a given 
sub-basin may at times appear worse than it is where interbasin 
transfers are available to meet demand in that sub-basin. Alter-
natives to the moving window size and regression method used 
to process the PCR-GLOBWB 2 results could not be assessed 
due to the lack of validation data. 

Direct validation of the aggregated grouped water risks and 
overall water risk is not possible. The perception of water risk 
is subjective, and robust validation methods for multi-indicator 
frameworks are unavailable. 

It is crucial to understand what the Aqueduct 4.0 frame work 
and database can and cannot do. Aqueduct 4.0 is tailored to 
comparing regions on a larger scale. It has limited application at 
a local level. The pre sented results should therefore be used as a 
prioritization tool, after which deeper dive assessments should 
be used to understand local conditions with greater accuracy.
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Table 3  |  Industry or user relevance weights and their descriptions

DEFAULT AGRICULTURE CHEMICALS CONSTRUCTION 
MATERIALS

ELECTRIC 
POWER

FOOD AND 
BEVERAGE

MINING OIL AND 
GAS

SEMICONDUCTOR TEXTILE

PH
YS

IC
AL

 R
IS

K 
QU

AN
TI

TY
 

1 Baseline water 
stress 4 4 2 2 4 4 2 1 2 2

2 Baseline water 
depletion 4 4 2 2 4 4 2 1 2 2

3 Interannual 
variability 0.5 2 1 2 1 1 2 1 2 2

4 Seasonal 
variability 0.5 0.5 1 0.5 2 0.5 1 0.5 1 0.5

5 Groundwater 
table decline 4 4 2 2 0.5 4 2 1 2 1

6 Riverine flood 
risk 1 1 4 1 2 0.5 4 1 1 1

7 Coastal flood 
risk 1 1 4 1 4 0.5 4 4 1 2

8 Drought risk 2 4 2 1 4 2 4 0.5 1 1

PH
YS

IC
AL

 R
IS

K 
QU

AL
IT

Y 9
Untreated 
connected 
wastewater

2 1 2 1 0.25 2 0.5 0.25 4 4

10
Coastal 
eutrophication 
potential

1 4 0.25 0.5 1 2 0.25 0 2 1

RE
GU

LA
TO

RY
 A

ND
 R

EP
UT

AT
IO

NA
L R

IS
K 11

Unimproved/
no drinking 
water 

2 2 2 1 0.25 1 4 4 1 2

12 Unimproved/
no sanitation 2 2 2 1 0.25 1 4 4 1 2

13
Peak RepRisk 
country ESG 
risk index

0.5 0.25 2 0.5 0.25 2 4 4 2 4

Source: WRI.
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Figure 8  |  Indicator weights per industry

Notes: Weights are based on data availability. Masked or NoData values are excluded from the aggregated weighting. Please see the online tool for the results. The data are also 
available for download. 

Source: WRI.
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APPENDIX A: DEMAND, 
WITHDRAWAL, AND RETURN FLOW
This appendix describes the hydrological terminology used in 
PCR-GLOBWB 2. An overview is shown in Figure A1. PCR-GLOBWB 
2 determines water demand. Withdrawal is demand limited by 
available water. 

Withdrawal consists of two components: Consumptive withdrawal 
and nonconsumptive withdrawal. Gross withdrawal refers to 
consumptive plus nonconsumptive withdrawal.  Net withdrawal refers 
to only the consumptive withdrawal. 

The nonconsumptive withdrawal will return to the water body, usually 
downstream, and is also referred to as return flow. 

Figure A1  |  Schematic of demand, gross and net 
withdrawal, and return flow

Source: WRI.

WATER CONSUMPTION

WATER WITHDRAWALS
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RETURN FLOWS
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APPENDIX B: GEOGRAPHIC 
CONVERSION TABLE
Table B1 is intended to provide a quick and 
approximate sense of scale

Table B1  |  Common arc lengths

ARC LENGTH DECIMAL DEGREES DISTANCE AT EQUATOR (KM) APPROXIMATE DISTANCE AT EQUATOR (KM)

360 arc degrees 360 40,030.17 40,000

1 arc degree 1 111.19 110

30 arc minutes 0.5 55.60 55

5 arc minutes 0.08333 9.27 10

1 arc minute 0.016667 1.85 2

30 arc seconds 0.008333 0.93 1

15 arc seconds 0.004167 0.46 .5

Source: WRI
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APPENDIX C: PCR-GLOBWB 2
Water stress, water depletion, interannual variability, seasonal 
variability, groundwater table decline, and elements of the flood 
risk indicators are all based on the PCRaster Global Water 
Balance 2 model (PCR-GLOBWB 2) (Sutanudjaja et al. 2018; 
Sutanudjaja et al. 2023). 

This appendix covers the basic model structure of PCR-GLOBWB 2 
and the settings used for the Aqueduct run. 

For baseline water stress, baseline water depletion, interannual 
variability, and seasonal variability we used a setup with default 
groundwater configuration. We will refer to this run as the default 
PCR-GLOBWB 2 run. 

For the groundwater table decline indicator, we used a setup of PCR-
GLOBWB 2 with an advanced representation of groundwater based 
on MODFLOW (de Graaf et al., 2017). We will refer to this setup as the 
PCR-GLOBWB 2 + MODFLOW run.

Digital elevation model
The starting point of almost any hydrological model and analysis 
is a digital elevation model (DEM). The DEM will determine the 
runoff direction; that is, the way the water flows. Aqueduct uses the 
same DEM as PCR-GLOBWB 2 and is a combination of the 30 × 
30 arc second HydroSheds data (Lehner et al. 2008) with the 3 ×3 
arc second Multi-Error-Removed Improved-Terrain Hydro Digital 
Elevation Model (MERIT Hydro DEM) (Yamazaki et al. 2019). Lakes 
and wetlands from the Global Lakes and Wetlands Database (GLWD) 
(Lehner and Döll 2004a) are extracted. Finally, reservoirs and dams 
from the Global Reservoir and Dam (GRanD) database have been 
used (Lehner et al. 2011). In short, lakes and reservoirs are part of 
PCR GLOBWB 2’s drainage network, meaning their storage is actively 
updated through the routing network. Lake outflow uses a standard 
storage-outflow relationship (Bos, 1989); reservoir flow follows a 
release strategy based on the average passing discharge (limited by 
the minimum and maximum storage per each reservoir’s construction 
year). Lake and reservoir storage is subject to abstraction from both 
evaporation and human withdrawals. The result is a hydrologically 
corrected data set of elevation, resampled to the PCRGLOBWB 
resolution of 5 × 5 arc minutes (approximately 10 km at the equator).

Local drainage direction
The local drainage direction, or the way water flows from one grid 
cell to the next, is derived from the DEM and assumes a strictly 
convergent flow. This means that in PCR-GLOBWB 2 and Aqueduct, 
bifurcations and river deltas are modeled as one stream instead of 
splitting rivers.

Model structure
PCR-GLOBWB 2 is a grid-based, modular global hydrological model. 
The world is represented by a 4,320 × 2,610 grid with a resolution 
of 5 × 5 arc minutes. For each of these cells, the model contains the 
following modules: 

 ▪ Meteorological forcing 

 ▪ Land surface 

 ▪ Groundwater

 ▪ Surface water routing

 ▪ Irrigation and water use

See Figure C1 for a schematic representation of the model.

Meteorological forcing module
To model key weather elements that affect hydrology, the 
meteorological forcing of PCR-GLOBWB 2 uses daily time series of 
spatial fields of precipitation, temperature, and reference evaporation. 

The default run is forced using data from two data sources: Global 
Soil Wetness Project Phase 3 (GSWP3) v1.09 (Dirmeyer et al. 
2006) for the period 1960–78 and W5E5 (which merges WATCH 
Forcing Data with ERA531 (WFDE5)) to extend the analysis to 2019 
(Lange et al. 2021).

Reference evapotranspiration is calculated using Penman-Monteith, 
according to the FAO guidelines (Allen et al. 1998). 

For groundwater, the PCR-GLOBWB 2 + MODFLOW run is forced 
using combined Climatic Research Unit (CRU) and Era-Interim (Harris 
et al. 2014; Dee et al. 2011). Although the model ran for 1959–2015, 
only the results for 1990–2014 have been used to calculate the 
groundwater table decline indicator (Verdin and Greenlee 1996).

Land surface model
This is the central module of PCR-GLOBWB 2 and connects directly 
to all other modules. It consists of multiple vertically stacked layers: 
canopy, snow, soil layer 1 (S1), and soil layer 2 (S2). See Figure C1. 
There are vertical fluxes between the stacked layers (e.g., S1 to S2 
and vice versa), as well as with the climate forcing module (e.g., 
precipitation and evaporation) and the groundwater module (e.g., S2 
to groundwater). Furthermore, there are horizontal fluxes to the runoff 
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Figure C1  |  PCR-GLOBWB 2 schematic overview

Note: “Schematic overview of a PCR-GLOBWB 2 cell and its modeled states and fluxes. S1, S2 (soil moisture storage), S3 (groundwater storage), Qdr (surface runoff—from rainfall 
and snowmelt), Qsf (interflow or stormflow), Qbf (baseflow or groundwater discharge), and Inf (riverbed infiltration from to groundwater). The thin red lines indicate surface water 
withdrawal, the thin blue lines groundwater abstraction, the thin red dashed lines return flows from surface water use, and the thin dashed blue lines return flows from groundwater 
use surface. For each sector, withdrawal − return flow = consumption. Water consumption adds to total evaporation. In the figure, the five modules that make up PCR-GLOBWB 2 are 
portrayed on the model components” (Sutanudjaja et al. 2018).

Source: Based on raw data from Sutanudjaja et al. (2018), modified/aggregated by WRI. 
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module. Within each grid cell, subgrid variability is modeled using a 
land-use class approach. This means that each grid cell is assigned a 
fraction of four land-use classes: 

 ▪ Tall natural vegetation 

 ▪ Short natural and nonnatural (rainfed crops) vegetation

 ▪ Nonpaddy-irrigated crops

 ▪ Paddy-irrigated crops (e.g., wet rice)

For instance, a grid cell might consist of 20 percent tall natural 
vegetation, 25 percent short vegetation, 40 percent nonpaddy-
irrigated crops, and 15 percent paddy-irrigated crops (total 100 
percent). Soil and vegetation parameters are obtained for each class 
and for each grid cell. Hence the soil and vegetation conditions are 
spatially distributed. 

The Global Land Cover Characteristics Data Base, version 2.0 (“GLCC 
2.0” 2010) and land surface parameter data set (Hagemann 2002) are 
used to assign the four land-use classes to each 5 arc minute grid 
cell as well as obtain a few soil and vegetation parameters. 

For each of the four land-use classes and for each soil layer (S1 and 
S2), the remaining soil parameters are defined using SoilGrids250 
(Hengl et al., 2017) and the WISE data set on global soil properties 
(Batjes 2012). SoilGrids250 was used to replace the Digital Soil Map 
of the World (Nachtergaele et al. 2009) because of its finer resolution.

Finally, additional monthly vegetation properties, including leaf area 
index (LAI) and crop factors, are derived from the MIRCA 2000 data 
set (Portmann et al. 2010) and the Global Crop Water Model (Siebert 
and Döll 2010). For each of the four land-use classes, the following 
evaporative fluxes are defined:

 ▪ Interception evaporation

 ▪ Bare soil evaporation

 ▪ Snow sublimation

 ▪ Vegetation-specific transpiration

Another main building block in the land surface model is runoff 
and infiltration modeling. There are two runoff components in the 
land surface module: (1) direct runoff from soil layer 1 combined 
with snowmelt from the snow layer and (2) stormflow19 runoff 
from soil layer 2. 

Direct and stormflow runoff are determined by excess infiltration 
according to the advanced ARNO scheme approach (Todini 1996; 
Hagemann and Gates 2003). This scheme determines which fraction 
will transfer vertically (infiltration) or horizontally (runoff).
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APPENDIX D: DELTA SUB-BASINS
The underlying digital elevation models of PCR-GLOBWB 2 and 
HydroBASINS assume a strictly convergent flow, which in some 
cases leads to erroneous results. Rivers will sometimes bifurcate, 
especially in flat delta areas. Available water resources and water 
withdrawal are pooled within each sub-basin.  Therefore, sub-basins 
that are part of the same delta need to be grouped and assumed to 
belong to a common hydrological unit.

The previous version of Aqueduct uses sub-basins derived from the 
Global Drainage Basin Database (GDBD) (Masutomi et al. 2009). 
By default, GDBD does not contain information about which basins 
were grouped. According to the author of GDBD, it is not possible 
to replicate the delta grouping using the HydroBASINS data set.  
Therefore, additional information regarding the 67 delta basins in 
GDBD was obtained directly from the authors and joined to the 
original database. 

The process of finding and grouping delta HydroBASINS includes 
a semiautomated way to create a shortlist for potential delta sub-
basins, and a manual step to ensure the correct classification. 

To classify HydroBASINS into delta regions, a spatial join was 
performed between HydroBASIN level 6 and GDBD with delta 
classifier information.  The HydroBASINS that intersect the GDBD 
delta basins are put on a shortlist for further inspection. 

The second step is to count the number of separate GDBD 
streams in each sub-basin. Multiple streams are an indication for 
delta sub-basins. 

As a third step, each shortlisted delta sub-basin is manually 
checked by comparing the shortlisted sub-basins with all water 
bodies extracted from OpenStreetMaps and the flow direction 
and flow accumulation of both HydroBASINS and PCR-GLOBWB 
2 (OpenStreetMap contributors 2018; Lehner and Grill 2013; 
Sutanudjaja et al. 2018). 

In total, 196 HydroBASINS are grouped into 63 delta basins. Eighty-
nine delta regions have been examined. A column containing delta 
information is added to the final Aqueduct database. 
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ENDNOTES
1. We used time series of groundwater heads. Groundwater head is 

a measure of pressure and can be linked to groundwater tables. 
See the groundwater table decline indicator for more information.

2. See Appendix A for the terminology. 

3. Gross demand is the maximum potential water requirement, 
compared to withdrawals, which represents the actual amount of 
water used. For example, a given year may use fewer withdrawals 
if heavy precipitation satisfied the water requirements. See Ap-
pendix A for more details. 

4. Water use estimates for domestic, industrial, and livestock sectors 
are inputs to PCR-GLOBWB 2. Irrigation is the only sectoral de-
mand that is an output of PCR-GLOBWB 2. Irrigation demand is a 
function of crop extents and climatic conditions such as tempera-
ture and humidity, and is therefore calculated on-the-fly during 
the modeling process (to adjust to the climate forcing data). For 
example, a crop field will require more water during a hotter sum-
mer than a cooler summer. 

5. Consumption from irrigation is calculated by taking the portion of 
precipitation lost to evaporation.

6. We assume that all water withdrawn for livestock is consumed. 
Therefore, livestock net consumption equals livestock gross de-
mand.

7. Interflow is the flow of water in the unsaturated ground below the 
surface but above the groundwater level. It discharges to above-
ground streams rather than infiltrates into groundwater. 

8. The PCR-GLOBWB2 output is called “runoff”. It is the sum of direct 
runoff, interflow, and base flow within the catchment. Consump-
tion is not removed. For more detail, see Ap pendix C.

9. The PCR-GLOBWB2 output is called “river discharge”. It is the 
accumulative flow of direct runoff, interflow and base flow, minus 
water consumption (i.e., surface water abstraction—return flow). 
Evaporation from river and infiltration from river to groundwater 
are also removed from the accumulated flow. For more detail, see 
Ap pendix C. 

10. Water that is being transported from one basin to another other 
than natural flow. 

11. Using the World Eckert IV projection. 

12. Aqueduct 3.0 rescaled data to a 30 arc second resolution. How-
ever, with the inclusion of the 15 future projections runs, Aqueduct 
4.0 had about 43x more data to process; therefore, we experi-
mented with different resampling sizes, assessing both the run 
time and change in results. We found that by using a 1 arc minute 
resolution, we could run the spatial reduction twice as fast while 
introducing minimal changes in the results.

13. An inflow point is where the stream enters the catchment for the 
first time and is completely upstream of the catchment (there is 
no presence of the catchment in its upstream path); an output 
point is where the stream leaves the catchment, and there is no 
presence of the catchment in its downstream path.

14. LDD is at the same 5 x 5 arc minute resolution as discharge data.

15. Rasterization is the process of turning a polygon into a grid (i.e., a 
series of squares). Polygons may have rounded edges, which can 
get lost in the rasterization process. Location boundaries, such as 
sub-basins and state borders, are polygons, whereas hydrological 
data, such as discharge, exist in a gridded format.  

16. PCR-GLOBWB 2 uses a 5 x 5 arc minute spatial resolution, 
whereas HydroBASINS sub-basins are derived from a much 
finer digital elevation model (3 ×3 arc seconds) resampled to 15 
x 15 arc second resolution. The result is that the larger 5 × 5 arc 
minute grid cells might (partially) overlap adjacent sub-basins, 
thereby erroneously making water available to that sub-basin.

17. Discharge represents cumulative flow. Although a false output 
point may temporarily show flow into an adjacent sub-basin, it is 
not contributing to that basin’s accumulated flow because they 
are not hydrologically connected. 

18. Years prior to 1979 (1960–1978) are no longer included in the 
baseline because they use a different reference climate forcing 
dataset than the more recent years. Data from 1979 to 2019 use 
W5E5 (Lange et al. 2021) for its observed atmospheric climate 
forcing data. Data from 1960 to 1978 use Global Soil Wetness 
Project Phase 3 (GSWP3) v1.09 (Dirmeyer et al. 2006).

19. The irrigation is especially sensitive to climate forcing and evapo-
transpiration algorithm limitations. 

20. The Theil-Sen regressor is a non-parametric method for linear 
regression that uses the median slope between points to estimate 
trend (Sen 1968). It is particularly powerful at handling outliers, 
which is why we use it over the Ordinary Least Sum regressor. 
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